Nora
Läkare - Karolinska Institutet
0 min. läsning
för ett år sedan
De första grundläggande symbolerna vi lär oss i matematik är plus ($+$) och minus ($-$).
Plus ($+$): Används för addition, vilket innebär att lägga samman två eller flera tal. $$ 3 + 2 = 5 $$
Minus ($-$): Används för subtraktion, vilket innebär att dra bort ett tal från ett annat. $$ 5 - 3 = 2 $$
Nästa par symboler är för multiplikation och division.
Multiplikation ($\times$ eller $\cdot$): När vi multiplicerar två tal. $$ 4 \times 3 = 12 $$ eller $$ 4 \cdot 3 = 12 $$
Division ($\div$ eller /): Delar ett tal med ett annat. $$ 12 \div 4 = 3 $$ eller $$ 12 / 4 = 3 $$
För att visa att två uttryck eller tal är lika eller olika används dessa symboler.
Likamed ($=$): Visar att två uttryck är lika med varandra. $$ 7 + 3 = 10 $$
Ej lika med ($\neq$): Visar att två uttryck inte är lika med varandra. $$ 7 + 3 \neq 9 $$
När vi jämför storleken av två tal använder vi symbolerna större än ($>$) och mindre än ($<$).
Större än ($>$): Används när ett tal är större än ett annat. $$ 5 > 3 $$
Mindre än ($<$): Används när ett tal är mindre än ett annat. $$ 3 < 5 $$
För att inkludera möjligheten att två tal är lika när man jämför dem, använder vi:
Större än eller lika med ($\geq$): Används när ett tal är större än eller lika med ett annat. $$ 5 \geq 3 $$ eller $$ 5 \geq 5 $$
Mindre än eller lika med ($\leq$): Används när ett tal är mindre än eller lika med ett annat. $$ 3 \leq 5 $$ eller $$ 5 \leq 5 $$
Parenteser används för att ändra prioriteten av operationerna i ett uttryck: $$ (2 + 3) \times 4 = 20 $$ utan parenteser $$ 2 + 3 \times 4 = 14 $$
Potenser används för att uttrycka multiplikation av ett tal med sig självt flera gånger.
Potenser ($a^b$): $$ 2^3 = 2 \times 2 \times 2 = 8 $$
Roten ur ($\sqrt{}$ och $\sqrt[3]{}$): $$ \sqrt{16} = 4 $$ $$ \sqrt[3]{27} = 3 $$
Ett bråk visar division av två tal: $$ \frac{a}{b} $$ där $a$ är täljaren och $b$ är nämnaren. Exempel: $$ \frac{3}{4} $$
Pi är en specialkonstant som ofta används i geometri, speciellt när det gäller cirklar: $$ \pi \approx 3.14 $$
Summation används för att representera summan av en sekvens av tal: $$ \sum_{i=1}^{n} i $$ vilket betyder summan av $i$ från 1 till $n$.
Detta är en grundläggande introduktion till de vanligaste tecknen och symbolerna i matematik. När du bekantar dig med dessa begrepp kommer det att bli mycket lättare att förstå och lösa matematiska problem!
Bästa sättet att lära sig bortglömda ord är genom att läsa och titta på TV dagligen så att du utsätts för orden ofta. Sen för att boosta till inlärande är det bra att bara öva, öva och öva för att lära sig fler ord. Ett perfekt ställe att lära sig orden är genom HP Kungens ORD del där du enkelt kan lära dig nya ord och de orden som du inte kan finns det tydliga förklaringar till.

Daniel
1 min. läsning
2024-03-16
Dessa potensregler är användbara verktyg inom matematik och används för att förenkla och utforska uttryck med potenser och exponenter. De tillämpas i olika matematiska områden och är grundläggande för att lösa problem som involverar potenser och exponenter. Detta är väldigt viktigt att veta inför högskoleprovet då det ofta förekommer uppgifter som inkluderar följande regler.

Leon
1 min. läsning
2024-03-16
Många delar av högskoleprovet inkluderar tekniska och naturvetenskapliga frågor där användningen av specialiserad terminologi är oundviklig. Behärskningen av dessa termer är inte bara central för att korrekt tolka och svara på tekniska frågor, utan underlättar också förståelsen av komplexa tekniska texter. Nedan är en lista på prefix och suffix som är bra att känna till för att maximera dina chanser att skriva högt på högskoleprovet.

Leon
1 min. läsning
2024-03-16