Daniel
Civilingenjör i datateknik - KTH
2 min. läsning
för ett år sedan
Multiplikation av bråk är en av de mest fundamentala operationerna inom matematik, speciellt när man hanterar tal i bråkform. Bråk består av en täljare (numerator) och en nämnare (denominator) och representeras allmänt som:
$$ \frac{a}{b} $$
När man multiplicerar två bråk handlar det om att multiplicera täljarna med varandra och nämnarna med varandra. Detta resulterar i ett nytt bråk som är produkten av de två initiala bråken.
Om vi har två bråk:
$$ \frac{a}{b} \text{ och } \frac{c}{d} $$
kan de multipliceras som följer:
$$ \frac{a}{b} \times \frac{c}{d} = \frac{a \cdot c}{b \cdot d} $$
Detta innebär att vi multiplicerar täljarna ($a$ och $c$) för att få den nya täljaren och multiplicerar nämnarna ($b$ och $d$) för att få den nya nämnaren.
Låt oss nu bryta ner multiplikation av bråk ytterligare genom att använda olika steg:
Täljaren i det resulterande bråket är produkten av täljarna i de bråk du multiplicerar. Så om vi har:
$$ \frac{3}{4} \times \frac{2}{5} $$
Multiplicerar vi täljarna 3 och 2:
$$ 3 \times 2 = 6 $$
Nämnaren i det resulterande bråket är produkten av nämnarna i de bråk du multiplicerar. Fortsätter vårt exempel:
$$ 4 \times 5 = 20 $$
Sätt samman de multiplicerade täljarna och nämnarna för att få det nya bråket:
$$ \frac{6}{20} $$
Ofta när vi multiplicerar bråk, kan det resulterande bråket förkortas. Detta innebär att vi delar både täljaren och nämnaren med deras största gemensamma delare (SGD). I vårt exempel:
$$ \frac{6}{20} $$
kan förkortas eftersom 6 och 20 har 2 som deras största gemensamma delare:
$$ \frac{6 \div 2}{20 \div 2} = \frac{3}{10} $$
Så den förkortade formen av vårt resultat blir:
$$ \frac{3}{10} $$
Bråkmultiplikation kan också blandas med andra operationer när man hanterar mer komplexa problem. Här är några begrepp att vara medveten om:
När man multiplicerar ett bråk med ett heltal, kan detta ses som att multiplicera täljaren med heltalet:
$$ \frac{a}{b} \times c = \frac{a \times c}{b} $$
Det kan vara fördelaktigt att omkasta faktorerna i multiplikationen om det underlättar beräkningen. Exempelvis:
$$ \left( \frac{a}{b} \times \frac{c}{d} \right) \times \frac{e}{f} = \frac{a}{b} \times \left( \frac{c \times e}{d \times f} \right) $$
Många delar av högskoleprovet inkluderar tekniska och naturvetenskapliga frågor där användningen av specialiserad terminologi är oundviklig. Behärskningen av dessa termer är inte bara central för att korrekt tolka och svara på tekniska frågor, utan underlättar också förståelsen av komplexa tekniska texter. Nedan är en lista på prefix och suffix som är bra att känna till för att maximera dina chanser att skriva högt på högskoleprovet.
Leon
1 min. läsning
2024-03-16
ORD-delen på högskoleprovet handlar om "Ordförståelse". Denna del syftar till att testa din förmåga att förstå och tolka ord och deras betydelser. Här är en grundläggande förklaring av denna del:
Leon
2 min. läsning
2024-03-16
Kvadratuttryck är användbara inom algebra för att förenkla ekvationer, lösa problem med andragradsekvationer och för att förstå polynomens egenskaper.
Morgan
0 min. läsning
2024-03-16