Nora
Läkare - Karolinska Institutet
2 min. läsning
för ett år sedan




När vi talar om lodräta linjer i ett koordinatsystem, refererar vi till de speciella typer av linjer som har en konstant $x$-koordinat oavsett $y$-värdets variation. Dessa lodräta linjer skiljer sig från de flesta vanliga räta linjer, som vanligtvis uttrycks i formen $y = kx + m$.
Definition av lodräta linjer
En lodrät linje är en linje där alla punkter på linjen har samma $x$-koordinat. Detta innebär att oavsett vilket $y$-värde du väljer, kommer $x$-värdet alltid att vara konstant.
Ekvation för en lodrät linje
Ekvationen för en lodrät linje kan skrivas som:
$$ x = a $$
Här representerar $a$ den fasta $x$-koordinat där linjen ligger. Varje punkt på denna linje kan skrivas som $(a, y)$, där $y$ kan vara vilket värde som helst, positivt, negativt eller noll.

Lodrät linje: y = 2
Ingen lutning (Oändlig lutning): Eftersom lutningen $k$ definieras som förändringen i $y$ dividerat med förändringen i $x$, har lodräta linjer en odefinierad eller "oändlig" lutning. Matematiskt uttrycks detta som en division med noll, vilket betyder att vi inte kan tilldela ett tal till lutningen.
Parallellitet: Alla lodräta linjer är parallella med $y$-axeln. Eftersom de inte lutar åt något håll i det horisontella planet, är de alltid parallella med varandra och med $y$-axeln.
Ingen $y$-intercept: Lodräta linjer skär inte $y$-axeln, förutom om de råkar sammanfalla med en axel (vilket bara är fallet när den lodräta linjen är $y$-axeln själv vid $x = 0$).
I ett koordinatsystem kan vi lätt rita en lodrät linje genom att:
Bestämma $x$-värdet $a$ där linjen ska vara: T.ex., om $x = 3$, rita en linje parallell med $y$-axeln vid $x = 3$.
Låt $y$-värdena variera: Linjen sträcker sig uppåt och nedåt i oändlighet längs detta $x = a$.
Exempel
Anta att vi ska representera linjen $x = 2$. I ett koordinatsystem ritar vi en lodrät linje som passerar genom alla punkter med $x$-koordinaten $2$, oberoende av vad $y$-koordinaten är:
Några exempel på punkter på linjen är $(2, 0)$, $(2, 1)$, $(2, -3)$, osv.

Lodrät linje: y = 2
ELF-delen på högskoleprovet handlar om "Engelsk Läsförståelse." Denna del testar din förmåga att förstå och tolka texter på engelska. Här är en grundläggande förklaring av engelsk läsförståelse på högskoleprovet:

Mathilde
3 min. läsning
2024-03-30
Ett bråk är en matematisk representation av en del av en helhet. Det är ett sätt att dela upp något i mindre delar. Bråk består av två delar: en täljare och en nämnare. Täljaren representerar antalet delar du har, medan nämnaren representerar det totala antalet delar i helheten. Bråk är användbara för att representera delar av en helhet, och de används i en mängd olika situationer inom matematiken och vardagen. Det är viktigt att förstå de grundläggande reglerna för bråk eftersom de är grunden för många andra matematiska koncept och dyker frekvent upp på högskoleprovet.

Morgan
1 min. läsning
2024-03-16
NOG-delen på högskoleprovet handlar om "Kvantitativa Resonemang." Denna del syftar till att testa din förmåga att resonera och dra slutsatser baserat på kvantitativa data och matematiska information. Här är en grundläggande förklaring av kvantitativa resonemang:

Leon
3 min. läsning
2024-03-20