Daniel
Civilingenjör i datateknik - KTH
1 min. läsning
för ett år sedan
När vi arbetar med procent i matematik, är det några grundläggande typer av problem som ofta dyker upp. Vi ska gå igenom dessa problem och deras lösningar grundligt, och de är:
Beräkning av procenten av en mängd.
Beräkning av en mängd baserat på procent.
Beräkning av procentuell förändring (ökning/minskning).
Detta är en av de mest grundläggande procentproblemen. Här vill vi hitta hur mycket en viss procent av en given mängd är. Formeln är: $$ \text{Procent av en mängd} = \left(\frac{\text{Procent}}{100}\right) \times \text{Hela mängden} $$
Exempel:
Om vi vill räkna ut vad 30% av 200 är: $$ 30\% \text{ av } 200 = \left(\frac{30}{100}\right) \times 200 = 0.30 \times 200 = 60 $$
I detta problem vet vi procentdelen och dess värde, men vi vill hitta hela mängden. Formeln för det är: $$ \text{Hela mängden} = \frac{\text{Procentdelen}}{\left(\frac{\text{Procent}}{100}\right)} $$
Exempel:
Om 30 är 20% av en mängd, vad är då hela mängden? $$ \text{Hela mängden} = \frac{30}{\left(\frac{20}{100}\right)} = \frac{30}{0.20} = 150 $$
Att beräkna procentuell förändring är viktigt för att förstå förändringar över tid, till exempel prishöjningar eller -sänkningar. Formeln för procentuell förändring är: $$ \text{Procentuell förändring} = \left(\frac{\text{Nytt värde} - \text{Gammalt värde}}{\text{Gammalt värde}}\right) \times 100\% $$ Observera att denna formel används för båda ökning och minskning; tecknet på förändringen visar vilken typ det är.
Exempel på Procentuell Ökning:
Om ett pris stiger från 50 till 70: $$ \text{Procentuell ökning} = \left(\frac{70 - 50}{50}\right) \times 100\% = \left(\frac{20}{50}\right) \times 100\% = 0.40 \times 100% = 40\% $$
Exempel på Procentuell Minskning:
Om ett pris sjunker från 80 till 50: $$ \text{Procentuell minskning} = \left(\frac{80 - 50}{80}\right) \times 100\% = \left(\frac{30}{80}\right) \times 100\% = 0.375 \times 100% = 37.5\% $$
ORD-delen på högskoleprovet handlar om "Ordförståelse". Denna del syftar till att testa din förmåga att förstå och tolka ord och deras betydelser. Här är en grundläggande förklaring av denna del:
Leon
2 min. läsning
2024-03-16
MEK-delen på högskoleprovet handlar om "Meningskomplettering". MEK testar din förmåga att slutföra meningar på ett korrekt och meningsfullt sätt. Här är en grundläggande förklaring av meningskompletteringsdelen:
Emil
3 min. läsning
2024-03-14
Målet med ekvationer är att lösa och hitta värden på variabeln $x$ som uppfyller ekvationens krav, vilket gör det möjligt att förstå och analysera olika typer av relationer och fenomen i matematik och vetenskap.
Morgan
0 min. läsning
2024-03-16