Daniel
Civilingenjör i datateknik - KTH
1 min. läsning
för 7 månader sedan
När vi arbetar med procent i matematik, är det några grundläggande typer av problem som ofta dyker upp. Vi ska gå igenom dessa problem och deras lösningar grundligt, och de är:
Beräkning av procenten av en mängd.
Beräkning av en mängd baserat på procent.
Beräkning av procentuell förändring (ökning/minskning).
Detta är en av de mest grundläggande procentproblemen. Här vill vi hitta hur mycket en viss procent av en given mängd är. Formeln är: $$ \text{Procent av en mängd} = \left(\frac{\text{Procent}}{100}\right) \times \text{Hela mängden} $$
Exempel:
Om vi vill räkna ut vad 30% av 200 är: $$ 30\% \text{ av } 200 = \left(\frac{30}{100}\right) \times 200 = 0.30 \times 200 = 60 $$
I detta problem vet vi procentdelen och dess värde, men vi vill hitta hela mängden. Formeln för det är: $$ \text{Hela mängden} = \frac{\text{Procentdelen}}{\left(\frac{\text{Procent}}{100}\right)} $$
Exempel:
Om 30 är 20% av en mängd, vad är då hela mängden? $$ \text{Hela mängden} = \frac{30}{\left(\frac{20}{100}\right)} = \frac{30}{0.20} = 150 $$
Att beräkna procentuell förändring är viktigt för att förstå förändringar över tid, till exempel prishöjningar eller -sänkningar. Formeln för procentuell förändring är: $$ \text{Procentuell förändring} = \left(\frac{\text{Nytt värde} - \text{Gammalt värde}}{\text{Gammalt värde}}\right) \times 100\% $$ Observera att denna formel används för båda ökning och minskning; tecknet på förändringen visar vilken typ det är.
Exempel på Procentuell Ökning:
Om ett pris stiger från 50 till 70: $$ \text{Procentuell ökning} = \left(\frac{70 - 50}{50}\right) \times 100\% = \left(\frac{20}{50}\right) \times 100\% = 0.40 \times 100% = 40\% $$
Exempel på Procentuell Minskning:
Om ett pris sjunker från 80 till 50: $$ \text{Procentuell minskning} = \left(\frac{80 - 50}{80}\right) \times 100\% = \left(\frac{30}{80}\right) \times 100\% = 0.375 \times 100% = 37.5\% $$
DTK-delen på högskoleprovet handlar om "Diagram, Tabeller och Kartor." Denna del testar din förmåga att tolka och använda information som presenteras i grafisk form, inklusive diagram, tabeller och kartor. Här är en grundläggande förklaring av denna del:
Leon
3 min. läsning
2024-03-30
Svenska språket består till stor del av lånade ord från andra länder. Genom att känna till vilka andra språk som svenskan har mycket låneord ifrån kan du få en fördel under högskoleprovet. Språk är som en levande organism, ständigt i förändring och anpassning. Människor har alltid migrerat, och med dem har även ord och uttryck tagit sig över språkgränser. Svenska språket bär på en fascinerande historia av lånade ord, där tusentals termer har invandrat från olika håll och bidragit till dess rika mångfald.
Morgan
3 min. läsning
2024-03-16
Detta är en grundläggande översikt av procent i matematiken. Procent används i många olika sammanhang, inklusive ekonomi, handel, och procentuell ökning och minskning. Det är ett användbart koncept för att förstå hur en del förhåller sig till en helhet.
Mathilde
1 min. läsning
2024-03-16