Daniel
Civilingenjör i datateknik - KTH
1 min. läsning
för ett år sedan




När vi arbetar med procent i matematik, är det några grundläggande typer av problem som ofta dyker upp. Vi ska gå igenom dessa problem och deras lösningar grundligt, och de är:
Beräkning av procenten av en mängd.
Beräkning av en mängd baserat på procent.
Beräkning av procentuell förändring (ökning/minskning).
Detta är en av de mest grundläggande procentproblemen. Här vill vi hitta hur mycket en viss procent av en given mängd är. Formeln är: $$ \text{Procent av en mängd} = \left(\frac{\text{Procent}}{100}\right) \times \text{Hela mängden} $$
Exempel:
Om vi vill räkna ut vad 30% av 200 är: $$ 30\% \text{ av } 200 = \left(\frac{30}{100}\right) \times 200 = 0.30 \times 200 = 60 $$
I detta problem vet vi procentdelen och dess värde, men vi vill hitta hela mängden. Formeln för det är: $$ \text{Hela mängden} = \frac{\text{Procentdelen}}{\left(\frac{\text{Procent}}{100}\right)} $$
Exempel:
Om 30 är 20% av en mängd, vad är då hela mängden? $$ \text{Hela mängden} = \frac{30}{\left(\frac{20}{100}\right)} = \frac{30}{0.20} = 150 $$
Att beräkna procentuell förändring är viktigt för att förstå förändringar över tid, till exempel prishöjningar eller -sänkningar. Formeln för procentuell förändring är: $$ \text{Procentuell förändring} = \left(\frac{\text{Nytt värde} - \text{Gammalt värde}}{\text{Gammalt värde}}\right) \times 100\% $$ Observera att denna formel används för båda ökning och minskning; tecknet på förändringen visar vilken typ det är.
Exempel på Procentuell Ökning:
Om ett pris stiger från 50 till 70: $$ \text{Procentuell ökning} = \left(\frac{70 - 50}{50}\right) \times 100\% = \left(\frac{20}{50}\right) \times 100\% = 0.40 \times 100% = 40\% $$
Exempel på Procentuell Minskning:
Om ett pris sjunker från 80 till 50: $$ \text{Procentuell minskning} = \left(\frac{80 - 50}{80}\right) \times 100\% = \left(\frac{30}{80}\right) \times 100\% = 0.375 \times 100% = 37.5\% $$
Dessa potensregler är användbara verktyg inom matematik och används för att förenkla och utforska uttryck med potenser och exponenter. De tillämpas i olika matematiska områden och är grundläggande för att lösa problem som involverar potenser och exponenter. Detta är väldigt viktigt att veta inför högskoleprovet då det ofta förekommer uppgifter som inkluderar följande regler.

Leon
1 min. läsning
2024-03-16
Sannolikhet handlar om att mäta hur troligt det är att en händelse kommer att inträffa. Det hjälper oss att förstå och kvantifiera osäkerhet och risk inom olika situationer. Sannolikhet är en central del av statistik och används i många aspekter av vårt dagliga liv. Sannolikhet är användbart inom många områden, inklusive spelteori, statistik, och riskanalys. Det hjälper oss att fatta beslut och förutse resultat i en mängd olika situationer. Enkelt sannolikhetsuppgifter dyker frekvent upp på högskoleprovet så detta är något du måste förstå för att prestera bra på kvantitativa delen.

Mathilde
3 min. läsning
2024-03-16
Många delar av högskoleprovet inkluderar tekniska och naturvetenskapliga frågor där användningen av specialiserad terminologi är oundviklig. Behärskningen av dessa termer är inte bara central för att korrekt tolka och svara på tekniska frågor, utan underlättar också förståelsen av komplexa tekniska texter. Nedan är en lista på prefix och suffix som är bra att känna till för att maximera dina chanser att skriva högt på högskoleprovet.

Leon
1 min. läsning
2024-03-16