Morgan
Industriell ekonomi - LiU
0 min. läsning
för ett år sedan




Minsta gemensamma multipel (ofta förkortat MGM) är en grundläggande matematisk koncept som är väldigt användbart i många olika sammanhang, inklusive högskoleprovet. Att förstå MGM innebär att man kan hantera situationer där det är viktigt att synkronisera eller jämföra olika intervaller, som t.ex. schemaläggning eller lösning av vissa ekvationer.
En multipel av ett tal är resultatet av att multiplicera det talet med ett heltal. Exempelvis är multipler av 3: 3, 6, 9, 12, 15, etc.
För att hitta multipler av ett tal $ a $ kan vi använda formeln:
[ \text{Multipler av } a = a \cdot n ]
där $ n $ är ett positivt heltal.
En gemensam multipel för två eller flera tal är ett tal som är en multipel av vart och ett av dessa tal. Till exempel är 12 en gemensam multipel av 3 och 4 eftersom:
[ 12 = 3 \cdot 4 \quad \text{och} \quad 12 = 4 \cdot 3 ]
Den minsta gemensamma multipeln av två eller flera tal är den minsta positiva gemensamma multipeln av dessa tal. Om du t.ex. vill hitta MGM för 4 och 5, kan du först skriva ner multiplerna av båda talen:
Multipler av 4: 4, 8, 12, 16, 20, 24, ...
Multipler av 5: 5, 10, 15, 20, 25, ...
Den minsta gemensamma multipeln är den minsta positiva tal som finns i båda listorna, som i detta fall är 20.
Grundläggande metod för att hitta MGM
För två tal $ a $ och $ b $, kan vi använda den algoritmiska metoden:
Skriv ner multiplerna av det större talet.
Hitta den första multipeln som också är en multipel av det mindre talet.
Ett effektivare sätt att hitta MGM involverar att använda primtalsfaktorisering.
Faktorisera varje tal i dess primtalsfaktorer.
För varje primtal som förekommer i faktoriseringen tar vi med det med den högsta exponenten.
Låt oss hitta MGM för 12 och 15:
Faktorisera varje tal:
$ 12 = 2^2 \cdot 3^1 $
$ 15 = 3^1 \cdot 5^1 $
2. Ta varje primtal med den högsta exponenten som förekommer:
Primtalet 2: högsta exponenten är 2 i $ 12 = 2^2 \cdot 3^1 $
Primtalet 3: båda talen har 3 med exponenten 1
Primtalet 5: högsta exponenten är 1 i $ 15 = 3^1 \cdot 5^1 $
Därmed är MGM:
[ \text{MGM} = 2^2 \cdot 3^1 \cdot 5^1 = 4 \cdot 3 \cdot 5 = 60 ]
DTK-delen på högskoleprovet handlar om "Diagram, Tabeller och Kartor." Denna del testar din förmåga att tolka och använda information som presenteras i grafisk form, inklusive diagram, tabeller och kartor. Här är en grundläggande förklaring av denna del:

Leon
3 min. läsning
2024-03-30
Olikheter är matematiska uttryck som beskriver hur två eller flera tal eller uttryck relaterar till varandra när det gäller deras storlek eller värde. Istället för att säga att två tal är lika, använder vi olikheter för att uttrycka att ett tal är större än eller mindre än ett annat. Det finns olika typer av olikheter: Mindre än, Större än, Mindre än eller lika med, Större än eller lika med, Olika från.

Leon
1 min. läsning
2024-03-16
Geometri är en gren inom matematiken som handlar om att studera former, storlekar och egenskaper hos objekt i rummet. Dessa objekt kan vara allt från linjer och cirklar till tre-dimensionella former som kuber och koner.

Mathilde
2 min. läsning
2024-03-16