Mathilde
UX Designer - Stockholms universitet
1 min. läsning
för ett år sedan
Koordinatsystem är en fundamental del av matematik som används i olika sammanhang för att illustrera och lösa problem visuellt. Koordinatsystemen hjälper oss att förstå och analysera relationer mellan olika uppsättningar av data, och är grundläggande för vidare studier i geometri, algebra och kalkyl. Det är även en del av högskoleprovet, så förståelse för dess grundprinciper kommer att vara till stor nytta.
I grund och botten är ett koordinatsystem ett sätt att ange positioner på en yta. Det vanligaste koordinatsystemet i gymnasiematematik är det tvådimensionella kartesiska koordinatsystemet. Detta system består av två vinkelräta linjer: en horisontell x-axel och en vertikal y-axel, som möts i en punkt kallad origo (0,0).
Koordinatsystem
Varje punkt i detta plan kan representeras med ett par av tal, kallas koordinater, skrivna som $(x, y)$. Här representerar $x$ punkten horisontella avstånd från origo, och $y$ representerar vertikala avstånd från origo. Till exempel, om vi har en punkt med koordinater (3, 2), betyder det att punkten ligger 3 enheter åt höger och 2 enheter upp från origo.
Koordinatsystemet är uppdelat i fyra kvadranter baserat på tecknen på x- och y-koordinaterna:
Kvadranter koordinatsystem
Första kvadranten: $x > 0$ och $y > 0$
Andra kvadranten: $x < 0$ och $y > 0$
Tredje kvadranten: $x < 0$ och $y < 0$
Fjärde kvadranten: $x > 0$ och $y < 0$ Dessa kvadranter hjälper till att snabbare kunna lokalisera och förstå positionen av en viss punkt i förhållande till origo.
I ett kartesiskt koordinatsystem kan vi använda ekvationer för att rita grafer och därigenom visualisera relationer mellan olika variabler. En av de enklaste formerna av en ekvation i ett koordinatsystem är den för en rak linje.
Linjens ekvation
Den allmänna formen av en linjens ekvation i ett plan är $$ y = kx + m $$ där: $k$ är linjens lutning (hur mycket y-värdet ändras för varje enhetsändring i x), $m$ är y-värdets skärningspunkt (den punkt där linjen skär y-axeln). Om $m = 2$, betyder det att för varje enhet vi rör oss i x-led, ökar y-värdet med 2 enheter. Detta är viktigt när vi analyserar trender och relationer i data.
Lutning och skärning
Lutningen $m$ anger hur brant linjen är. Om $k > 0$, är linjen stigande, om $k < 0$, är den fallande, och om $k = 0$, är linjen horisontell. Skärningspunkten $m$ visar oss var linjen korsar y-axeln, en bra referens för att rita linjer.
Rät linje
Många delar av högskoleprovet inkluderar tekniska och naturvetenskapliga frågor där användningen av specialiserad terminologi är oundviklig. Behärskningen av dessa termer är inte bara central för att korrekt tolka och svara på tekniska frågor, utan underlättar också förståelsen av komplexa tekniska texter. Nedan är en lista på prefix och suffix som är bra att känna till för att maximera dina chanser att skriva högt på högskoleprovet.
Leon
1 min. läsning
2024-03-16
Kvadratuttryck är användbara inom algebra för att förenkla ekvationer, lösa problem med andragradsekvationer och för att förstå polynomens egenskaper.
Morgan
0 min. läsning
2024-03-16
Bästa sättet att lära sig bortglömda ord är genom att läsa och titta på TV dagligen så att du utsätts för orden ofta. Sen för att boosta till inlärande är det bra att bara öva, öva och öva för att lära sig fler ord. Ett perfekt ställe att lära sig orden är genom HP Kungens ORD del där du enkelt kan lära dig nya ord och de orden som du inte kan finns det tydliga förklaringar till.
Daniel
1 min. läsning
2024-03-16