Koordinatsystem introduktion

Mathilde

UX Designer - Stockholms universitet

1 min. läsning

för 6 månader sedan

haze-hand-holding-a-note
haze-hand-holding-a-note
haze-hand-holding-a-note
haze-hand-holding-a-note

Koordinatsystem är en fundamental del av matematik som används i olika sammanhang för att illustrera och lösa problem visuellt. Koordinatsystemen hjälper oss att förstå och analysera relationer mellan olika uppsättningar av data, och är grundläggande för vidare studier i geometri, algebra och kalkyl. Det är även en del av högskoleprovet, så förståelse för dess grundprinciper kommer att vara till stor nytta.

Grundläggande teori

I grund och botten är ett koordinatsystem ett sätt att ange positioner på en yta. Det vanligaste koordinatsystemet i gymnasiematematik är det tvådimensionella kartesiska koordinatsystemet. Detta system består av två vinkelräta linjer: en horisontell x-axel och en vertikal y-axel, som möts i en punkt kallad origo (0,0).

Koordinatsystem

Koordinatsystem

Varje punkt i detta plan kan representeras med ett par av tal, kallas koordinater, skrivna som $(x, y)$. Här representerar $x$ punkten horisontella avstånd från origo, och $y$ representerar vertikala avstånd från origo. Till exempel, om vi har en punkt med koordinater (3, 2), betyder det att punkten ligger 3 enheter åt höger och 2 enheter upp från origo.

-9 dagar kvar till nästa prov

Börja med att skapa ett konto helt Gratis så kan du testa på alla funktioner och börja din resa mot din Drömutbildning!

Kvadranter

Koordinatsystemet är uppdelat i fyra kvadranter baserat på tecknen på x- och y-koordinaterna:

Kvadranter koordinatsystem

Kvadranter koordinatsystem

    Första kvadranten: $x > 0$ och $y > 0$

    Andra kvadranten: $x < 0$ och $y > 0$

    Tredje kvadranten: $x < 0$ och $y < 0$

    Fjärde kvadranten: $x > 0$ och $y < 0$ Dessa kvadranter hjälper till att snabbare kunna lokalisera och förstå positionen av en viss punkt i förhållande till origo.

Ekvationer och Grafer

I ett kartesiskt koordinatsystem kan vi använda ekvationer för att rita grafer och därigenom visualisera relationer mellan olika variabler. En av de enklaste formerna av en ekvation i ett koordinatsystem är den för en rak linje.

Linjens ekvation

Den allmänna formen av en linjens ekvation i ett plan är $$ y = kx + m $$ där: $k$ är linjens lutning (hur mycket y-värdet ändras för varje enhetsändring i x), $m$ är y-värdets skärningspunkt (den punkt där linjen skär y-axeln). Om $m = 2$, betyder det att för varje enhet vi rör oss i x-led, ökar y-värdet med 2 enheter. Detta är viktigt när vi analyserar trender och relationer i data.

Lutning och skärning

Lutningen $m$ anger hur brant linjen är. Om $k > 0$, är linjen stigande, om $k < 0$, är den fallande, och om $k = 0$, är linjen horisontell. Skärningspunkten $m$ visar oss var linjen korsar y-axeln, en bra referens för att rita linjer.

Rät linje

Rät linje

-9 dagar kvar till nästa prov

Börja med att skapa ett konto helt Gratis så kan du testa på alla funktioner och börja din resa mot din Drömutbildning!