Nora
Läkare - Karolinska Institutet
0 min. läsning
för ett år sedan




De naturliga talen ($\mathbb{N}$) är de mest grundläggande talen i matematik. De omfattar alla positiva heltal från 1 och uppåt, och ibland inkluderas 0 beroende på sammanhanget.
Exempel på naturliga tal: $$ 0, 1, 2, 3, 4, \ldots $$
Ingen decimal eller bråkdelsrepresentering.
Alla tal är positiva (eller noll).
Används ofta vid räkning av objekt.
Heltalen ($\mathbb{Z}$) inkluderar alla naturliga tal, deras negativa motsvarigheter och noll.
Exempel på heltal: $$ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots $$
Kan vara positiva, negativa eller noll.
Ingen decimal eller bråkdelsrepresentering.
Används ofta vid räkning, temperaturmätning och bankkontosaldon.
De rationella talen ($\mathbb{Q}$) är alla tal som kan uttryckas som en kvot eller ett bråk $\frac{a}{b}$ där $a$ och $b$ är heltal och $b \neq 0$.
Exempel på rationella tal: $$ \frac{1}{2}, \frac{3}{4}, -\frac{5}{6}, 0, 2, -3 $$
Kan representeras som bråk.
Kan ha ändliga (t.ex. $0.75$) eller oändliga periodiska decimalutvecklingar (t.ex. $0.333\ldots$).
Inkluderar heltal (eftersom varje heltal $n$ kan skrivas som $\frac{n}{1}$).
Irrationella tal är tal som inte kan uttryckas som en enkel kvot av två heltal. Deras decimalutvecklingar är oändliga och icke-periodiska.
Exempel på irrationella tal: $$ \sqrt{2}, \pi, e $$
Kan inte representeras som exakt bråk.
Har oändliga och icke-periodiska decimalutvecklingar.
Fyller ut "hålen" mellan rationella tal på tallinjen.
De reella talen ($\mathbb{R}$) inkluderar alla rationella och irrationella tal. Detta är de tal vi vanligtvis arbetar med i vardagliga matematiska sammanhang.
Exempel på reella tal: $$ 2, -3, \frac{4}{5}, \sqrt{2}, \pi $$
Inkluderar både rationella och irrationella tal.
Kan representeras på en oändlig tallinje.
Används vid mätningar, beräkningar och matematiska modeller.
De komplexa talen ($\mathbb{C}$) inkluderar alla reella tal samt imaginära tal av formen $a + bi$, där $a$ och $b$ är reella tal och $i$ är den imaginära enheten med egenskapen $i^2 = -1$.
Exempel på komplexa tal: $$ 3 + 4i, -2 - 5i, i, 2 $$
Kan beskriva alla reella och imaginära lösningar till ekvationer.
Används mycket inom fysik, ingenjörsvetenskap och signalbehandling.
Både medelvärdet och medianen har sina användningsområden beroende på sammanhanget och målen med din analys. Att förstå skillnaderna mellan dem är viktigt för att kunna använda rätt mått för rätt situation.

Leon
0 min. läsning
2024-03-16
Målet med ekvationer är att lösa och hitta värden på variabeln $x$ som uppfyller ekvationens krav, vilket gör det möjligt att förstå och analysera olika typer av relationer och fenomen i matematik och vetenskap.

Morgan
0 min. läsning
2024-03-16
DTK-delen på högskoleprovet handlar om "Diagram, Tabeller och Kartor." Denna del testar din förmåga att tolka och använda information som presenteras i grafisk form, inklusive diagram, tabeller och kartor. Här är en grundläggande förklaring av denna del:

Leon
3 min. läsning
2024-03-30