Nora
Läkare - Karolinska Institutet
0 min. läsning
för ett år sedan
De naturliga talen ($\mathbb{N}$) är de mest grundläggande talen i matematik. De omfattar alla positiva heltal från 1 och uppåt, och ibland inkluderas 0 beroende på sammanhanget.
Exempel på naturliga tal: $$ 0, 1, 2, 3, 4, \ldots $$
Ingen decimal eller bråkdelsrepresentering.
Alla tal är positiva (eller noll).
Används ofta vid räkning av objekt.
Heltalen ($\mathbb{Z}$) inkluderar alla naturliga tal, deras negativa motsvarigheter och noll.
Exempel på heltal: $$ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots $$
Kan vara positiva, negativa eller noll.
Ingen decimal eller bråkdelsrepresentering.
Används ofta vid räkning, temperaturmätning och bankkontosaldon.
De rationella talen ($\mathbb{Q}$) är alla tal som kan uttryckas som en kvot eller ett bråk $\frac{a}{b}$ där $a$ och $b$ är heltal och $b \neq 0$.
Exempel på rationella tal: $$ \frac{1}{2}, \frac{3}{4}, -\frac{5}{6}, 0, 2, -3 $$
Kan representeras som bråk.
Kan ha ändliga (t.ex. $0.75$) eller oändliga periodiska decimalutvecklingar (t.ex. $0.333\ldots$).
Inkluderar heltal (eftersom varje heltal $n$ kan skrivas som $\frac{n}{1}$).
Irrationella tal är tal som inte kan uttryckas som en enkel kvot av två heltal. Deras decimalutvecklingar är oändliga och icke-periodiska.
Exempel på irrationella tal: $$ \sqrt{2}, \pi, e $$
Kan inte representeras som exakt bråk.
Har oändliga och icke-periodiska decimalutvecklingar.
Fyller ut "hålen" mellan rationella tal på tallinjen.
De reella talen ($\mathbb{R}$) inkluderar alla rationella och irrationella tal. Detta är de tal vi vanligtvis arbetar med i vardagliga matematiska sammanhang.
Exempel på reella tal: $$ 2, -3, \frac{4}{5}, \sqrt{2}, \pi $$
Inkluderar både rationella och irrationella tal.
Kan representeras på en oändlig tallinje.
Används vid mätningar, beräkningar och matematiska modeller.
De komplexa talen ($\mathbb{C}$) inkluderar alla reella tal samt imaginära tal av formen $a + bi$, där $a$ och $b$ är reella tal och $i$ är den imaginära enheten med egenskapen $i^2 = -1$.
Exempel på komplexa tal: $$ 3 + 4i, -2 - 5i, i, 2 $$
Kan beskriva alla reella och imaginära lösningar till ekvationer.
Används mycket inom fysik, ingenjörsvetenskap och signalbehandling.
NOG-delen på högskoleprovet handlar om "Kvantitativa Resonemang." Denna del syftar till att testa din förmåga att resonera och dra slutsatser baserat på kvantitativa data och matematiska information. Här är en grundläggande förklaring av kvantitativa resonemang:
Leon
3 min. läsning
2024-03-20
Sannolikhet handlar om att mäta hur troligt det är att en händelse kommer att inträffa. Det hjälper oss att förstå och kvantifiera osäkerhet och risk inom olika situationer. Sannolikhet är en central del av statistik och används i många aspekter av vårt dagliga liv. Sannolikhet är användbart inom många områden, inklusive spelteori, statistik, och riskanalys. Det hjälper oss att fatta beslut och förutse resultat i en mängd olika situationer. Enkelt sannolikhetsuppgifter dyker frekvent upp på högskoleprovet så detta är något du måste förstå för att prestera bra på kvantitativa delen.
Mathilde
3 min. läsning
2024-03-16
Detta är en grundläggande översikt av procent i matematiken. Procent används i många olika sammanhang, inklusive ekonomi, handel, och procentuell ökning och minskning. Det är ett användbart koncept för att förstå hur en del förhåller sig till en helhet.
Mathilde
1 min. läsning
2024-03-16