Nora
Läkare - Karolinska Institutet
3 min. läsning
för ett år sedan




Negativa tal är tal som är mindre än noll. Vi använder ofta negativa tal för att beskriva saker som underskott eller temperaturer under fryspunkten.
Exempel på negativa tal: $-1$, $-2$, $-3$, $\ldots$
Talfältet
På en tallinje placeras de negativa talen till vänster om noll:
... -3 -2 -1 0 1 2 3 ...
Sammanfattning
Negativa tal används för att representera värden mindre än noll.
Addition och subtraktion med negativa tal kan kräva förändring av operationstecknet.
Multiplikation och division med negativa tal följer specifika regler beroende på om faktorerna är positiva eller negativa.
Jämförelser av negativa tal innebär att förstå deras placering på en tallinje.
Absolutvärde av ett negativt tal är det positiva talet motsvarande dess avstånd från noll.
För att bemästra negativa tal är det viktigt att öva på dessa koncept och utföra många olika typer av beräkningar!
Addition av negativa tal
När man adderar två negativa tal blir resultatet mer negativt.
$$ -2 + (-3) = -5 $$
Det är också viktigt att förstå att:
$$ 2 + (-3) = 2 - 3 = -1 $$
Subtraktion av negativa tal
Subtraktion innebär att ta bort ett tal. När vi subtraherar ett negativt tal, motsvarar det att addera dess positiva motsats.
$$ -5 - (-3) = -5 + 3 = -2 $$
Multiplikation
Regler för multiplikation med negativa tal:
En negativ siffra multiplicerat med en positiv siffra ger ett negativt tal: $$ -2 \times 3 = -6 $$
Två negativa tal multiplicerat tillsammans ger ett positivt tal: $$ -2 \times -3 = 6 $$
Division
Reglerna för division fungerar på liknande sätt som multiplication:
En negativ siffra dividerat med en positiv siffra ger ett negativt tal: $$ \frac{-6}{2} = -3 $$
Två negativa tal dividerade tillsammans ger ett positivt tal: $$ \frac{-6}{-2} = 3 $$
När vi jämför två negativa tal är det viktigt att komma ihåg att ett tal med större negativt värde är mindre.
$$ -3 < -1 $$
Även om $3$ är större än $1$, är $-3$ mindre än $-1$ eftersom det ligger längre åt vänster på tallinjen.
Absolutvärdet av ett tal är dess avstånd från noll på en tallinje, utan att bry sig om riktningen. Det skrivs med två vertikala streck:
$$ | -5 | = 5 $$
$$ | 5 | = 5 $$
Absolutvärdet av ett negativt tal är alltså det positiva motsvarande värdet.
Sannolikhet handlar om att mäta hur troligt det är att en händelse kommer att inträffa. Det hjälper oss att förstå och kvantifiera osäkerhet och risk inom olika situationer. Sannolikhet är en central del av statistik och används i många aspekter av vårt dagliga liv. Sannolikhet är användbart inom många områden, inklusive spelteori, statistik, och riskanalys. Det hjälper oss att fatta beslut och förutse resultat i en mängd olika situationer. Enkelt sannolikhetsuppgifter dyker frekvent upp på högskoleprovet så detta är något du måste förstå för att prestera bra på kvantitativa delen.

Mathilde
3 min. läsning
2024-03-16
DTK-delen på högskoleprovet handlar om "Diagram, Tabeller och Kartor." Denna del testar din förmåga att tolka och använda information som presenteras i grafisk form, inklusive diagram, tabeller och kartor. Här är en grundläggande förklaring av denna del:

Leon
3 min. läsning
2024-03-30
LÄS-delen på högskoleprovet handlar om "Svensk läsförståelse". Det syftar till att testa din förmåga att förstå och analysera texter, inklusive skönlitteratur, sakprosa och tidningsartiklar. Här är en grundläggande förklaring av den svenska läsförståelsedelen:

Daniel
3 min. läsning
2024-03-30